package.json
El fichero manifest de un paquete. Contient toda la metadata del paquete, incluyendo dependencies, titulo, autor, etcétera. Este es un estandar a través de todos gestores de paquetes de Node.JS, incluído pnpm.
engines
Puedes específicar la versión de Node y pnpm con la que tu aplicación trabaja:
{
"engines": {
"node": ">=10",
"pnpm": ">=3"
}
}
During local development, pnpm will always fail with an error message
if its version does not match the one specified in the engines
field.
Unless the user has set the engine-strict
config flag (see .npmrc), this
field is advisory only and will only produce warnings when your package is
installed as a dependency.
dependenciesMeta
Additional meta information used for dependencies declared inside dependencies
, optionalDependencies
, and devDependencies
.
dependenciesMeta.*.injected
If this is set to true
for a local dependency, the package will be hard linked to the virtual store (node_modules/.pnpm
) and symlinked from the virtual store to the modules directory.
If this is set to false
or not set for a local dependency, the package will be symlinked directly from its location in the workspace to the module directory.
For instance, the following package.json
in a workspace will create a symlink to button
in the node_modules
directory of card
:
{
"name": "card",
"dependencies": {
"button": "workspace:1.0.0"
}
}
But what if button
has react
in its peer dependencies? If all projects in the monorepo use the same version of react
, then no problem. But what if button
is required by card
that uses react@16
and form
with react@17
? Without using inject
, you'd have to choose a single version of react
and install it as dev dependency of button
. But using the injected
field you can inject button
to a package, and button
will be installed with the react
version of that package.
So this will be the package.json
of card
:
{
"name": "card",
"dependencies": {
"button": "workspace:1.0.0",
"react": "16"
},
"dependenciesMeta": {
"button": {
"injected": true
}
}
}
button
will be hard linked into the dependencies of card
, and react@16
will be symlinked to the dependencies of card/node_modules/button
.
And this will be the package.json
of form
:
{
"name": "form",
"dependencies": {
"button": "workspace:1.0.0",
"react": "17"
},
"dependenciesMeta": {
"button": {
"injected": true
}
}
}
button
will be hard linked into the dependencies of form
, and react@17
will be symlinked to the dependencies of form/node_modules/button
.
In contrast to normal dependencies, injected ones are not symlinked to the destination folder, so they are not updated automatically, e.g. after running the build script. To update the hard linked folder contents to the latest state of the dependency package folder, call pnpm i
again.
Note that the button
package must have any lifecycle script that runs on install in order for pnpm
to detect the changes and update it. For example, the package can be rebuilt on install: "prepare": "pnpm run build"
. Any script would work, even a simple unrelated command without side effects, like this: "prepare": "pnpm root"
.
peerDependenciesMeta
This field lists some extra information related to the dependencies listed in
the peerDependencies
field.
peerDependenciesMeta.*.optional
If this is set to true, the selected peer dependency will be marked as optional by the package manager. Therefore, the consumer omitting it will no longer be reported as an error.
Por ejemplo:
{
"peerDependencies": {
"foo": "1"
},
"peerDependenciesMeta": {
"foo": {
"optional": true
},
"bar": {
"optional": true
}
}
}
Note that even though bar
was not specified in peerDependencies
, it is
marked as optional. pnpm por lo tanto supondrá que cualquier versión de bar está bien.
However, foo
is optional, but only to the required version specification.
publishConfig
Es posible anular algunos campos en el manifiesto antes de que el paquete esté. Los siguientes campos pueden ser anulados:
To override a field, add the publish version of the field to publishConfig
.
For instance, the following package.json
:
{
"name": "foo",
"version": "1.0.0",
"main": "src/index.ts",
"publishConfig": {
"main": "lib/index.js",
"typings": "lib/index.d.ts"
}
}
Se publicará como:
{
"name": "foo",
"version": "1.0.0",
"main": "lib/index.js",
"typings": "lib/index.d.ts"
}
publishConfig.executableFiles
De manera predeterminada, por razones de portabilidad, ningún archivo, excepto los que se enumeran en el campo bin, se marcará como ejecutable en el archivo del paquete resultante. The executableFiles
field lets you declare additional fields that must have the executable flag (+x) set even if they aren't directly accessible through the bin field.
{
"publishConfig": {
"executableFiles": [
"./dist/shim.js"
]
}
}
publishConfig.directory
You also can use the field publishConfig.directory
to customize the published subdirectory relative to the current package.json
.
Se espera que tenga una versión modificada del paquete actual en el directorio especificado (usualmente usando herramientas de compilación de terceros).
In this example the
"dist"
folder must contain apackage.json
{
"name": "foo",
"version": "1.0.0",
"publishConfig": {
"directory": "dist"
}
}
publishConfig.linkDirectory
- Default: true
- Type: Boolean
When set to true
, the project will be symlinked from the publishConfig.directory
location during local development.
Por ejemplo:
{
"name": "foo",
"version": "1.0.0",
"publishConfig": {
"directory": "dist"
"linkDirectory": true
}
}
pnpm.overrides
This field allows you to instruct pnpm to override any dependency in the dependency graph. This is useful to enforce all your packages to use a single version of a dependency, backport a fix, or replace a dependency with a fork.
Note that the overrides field can only be set at the root of the project.
An example of the "pnpm"."overrides"
field:
{
"pnpm": {
"overrides": {
"foo": "^1.0.0",
"quux": "npm:@myorg/quux@^1.0.0",
"bar@^2.1.0": "3.0.0",
"qar@1>zoo": "2"
}
}
}
You may specify the package the overriden dependency belongs to by
separating the package selector from the dependency selector with a ">", for
example qar@1>zoo
will only override the zoo
dependency of qar@1
, not for
any other dependencies.
Una anulación se puede definir como una referencia a la especificación de una dependencia directa.
This is achieved by prefixing the name of the dependency with a $
:
{
"dependencies": {
"foo": "^1.0.0"
},
"pnpm": {
"overrides": {
"foo": "$foo"
}
}
}
The referenced package does not need to match the overridden one:
{
"dependencies": {
"foo": "^1.0.0"
},
"pnpm": {
"overrides": {
"bar": "$foo"
}
}
}
pnpm.packageExtensions
The packageExtensions
fields offer a way to extend the existing package definitions with additional information. For example, if react-redux
should have react-dom
in its peerDependencies
but it has not, it is possible to patch react-redux
using packageExtensions
:
{
"pnpm": {
"packageExtensions": {
"react-redux": {
"peerDependencies": {
"react-dom": "*"
}
}
}
}
}
The keys in packageExtensions
are package names or package names and semver ranges, so it is possible to patch only some versions of a package:
{
"pnpm": {
"packageExtensions": {
"react-redux@1": {
"peerDependencies": {
"react-dom": "*"
}
}
}
}
}
The following fields may be extended using packageExtensions
: dependencies
, optionalDependencies
, peerDependencies
, and peerDependenciesMeta
.
A bigger example:
{
"pnpm": {
"packageExtensions": {
"express@1": {
"optionalDependencies": {
"typescript": "2"
}
},
"fork-ts-checker-webpack-plugin": {
"dependencies": {
"@babel/core": "1"
},
"peerDependencies": {
"eslint": ">= 6"
},
"peerDependenciesMeta": {
"eslint": {
"optional": true
}
}
}
}
}
}
Together with Yarn, we maintain a database of packageExtensions
to patch broken packages in the ecosystem.
If you use packageExtensions
, consider sending a PR upstream and contributing your extension to the @yarnpkg/extensions
database.
pnpm.peerDependencyRules
pnpm.peerDependencyRules.ignoreMissing
pnpm will not print warnings about missing peer dependencies from this list.
For instance, with the following configuration, pnpm will not print warnings if a dependency needs react
but react
is not installed:
{
"pnpm": {
"peerDependencyRules": {
"ignoreMissing": ["react"]
}
}
}
Package name patterns may also be used:
{
"pnpm": {
"peerDependencyRules": {
"ignoreMissing": ["@babel/*", "@eslint/*"]
}
}
}
pnpm.peerDependencyRules.allowedVersions
Unmet peer dependency warnings will not be printed for peer dependencies of the specified range.
For instance, if you have some dependencies that need react@16
but you know that they work fine with react@17
, then you may use the following configuration:
{
"pnpm": {
"peerDependencyRules": {
"allowedVersions": {
"react": "17"
}
}
}
}
This will tell pnpm that any dependency that has react in its peer dependencies should allow react
v17 to be installed.
It is also possible to suppress the warnings only for peer dependencies of specific packages. For instance, with the following configuration react
v17 will be only allowed when it is in the peer dependencies of the button
v2 package or in the dependencies of any card
package:
{
"pnpm": {
"peerDependencyRules": {
"allowedVersions": {
"button@2>react": "17",
"card>react": "17"
}
}
}
}
pnpm.peerDependencyRules.allowAny
allowAny
is an array of package name patterns, any peer dependency matching the pattern will be resolved from any version, regardless of the range specified in peerDependencies
. Por ejemplo:
{
"pnpm": {
"peerDependencyRules": {
"allowAny": ["@babel/*", "eslint"]
}
}
}
The above setting will mute any warnings about peer dependency version mismatches related to @babel/
packages or eslint
.
pnpm.neverBuiltDependencies
This field allows to ignore the builds of specific dependencies. The "preinstall", "install", and "postinstall" scripts of the listed packages will not be executed during installation.
An example of the "pnpm"."neverBuiltDependencies"
field:
{
"pnpm": {
"neverBuiltDependencies": ["fsevents", "level"]
}
}
pnpm.onlyBuiltDependencies
A list of package names that are allowed to be executed during installation. If this field exists, only the listed packages will be able to run install scripts.
Ejemplo:
{
"pnpm": {
"onlyBuiltDependencies": ["fsevents"]
}
}
pnpm.onlyBuiltDependenciesFile
This configuration option allows users to specify a JSON file that lists the only packages permitted to run installation scripts during the pnpm install process. By using this, you can enhance security or ensure that only specific dependencies execute scripts during installation.
Ejemplo:
{
"dependencies": {
"@my-org/policy": "1.0.0"
},
"pnpm": {
"onlyBuiltDependenciesFile": "node_modules/@my-org/policy/onlyBuiltDependencies.json"
}
}
The JSON file itself should contain an array of package names:
[
"fsevents"
]
pnpm.allowedDeprecatedVersions
This setting allows muting deprecation warnings of specific packages.
Ejemplo:
{
"pnpm": {
"allowedDeprecatedVersions": {
"express": "1",
"request": "*"
}
}
}
With the above configuration pnpm will not print deprecation warnings about any version of request
and about v1 of express
.
pnpm.patchedDependencies
This field is added/updated automatically when you run pnpm patch-commit. It is a dictionary where the key should be the package name and exact version. The value should be a relative path to a patch file.
Ejemplo:
{
"pnpm": {
"patchedDependencies": {
"express@4.18.1": "patches/express@4.18.1.patch"
}
}
}
pnpm.allowNonAppliedPatches
When true
, installation won't fail if some of the patches from the patchedDependencies
field were not applied.
{
"pnpm": {
"patchedDependencies": {
"express@4.18.1": "patches/express@4.18.1.patch"
},
"allowNonAppliedPatches": true
}
pnpm.updateConfig
pnpm.updateConfig.ignoreDependencies
Sometimes you can't update a dependency. For instance, the latest version of the dependency started to use ESM but your project is not yet in ESM. Annoyingly, such a package will be always printed out by the pnpm outdated
command and updated, when running pnpm update --latest
. However, you may list packages that you don't want to upgrade in the ignoreDependencies
field:
{
"pnpm": {
"updateConfig": {
"ignoreDependencies": ["load-json-file"]
}
}
}
Patterns are also supported, so you may ignore any packages from a scope: @babel/*
.
pnpm.auditConfig
pnpm.auditConfig.ignoreCves
A list of CVE IDs that will be ignored by the pnpm audit
command.
{
"pnpm": {
"auditConfig": {
"ignoreCves": [
"CVE-2022-36313"
]
}
}
}
pnpm.requiredScripts
Scripts listed in this array will be required in each project of the workspace. Otherwise, pnpm -r run <script name>
will fail.
{
"pnpm": {
"requiredScripts": ["build"]
}
}
pnpm.supportedArchitectures
You can specify architectures for which you'd like to install optional dependencies, even if they don't match the architecture of the system running the install.
For example, the following configuration tells to install optional dependencies for Windows x64:
{
"pnpm": {
"supportedArchitectures": {
"os": ["win32"],
"cpu": ["x64"]
}
}
}
Whereas this configuration will install optional dependencies for Windows, macOS, and the architecture of the system currently running the install. It includes artifacts for both x64 and arm64 CPUs:
{
"pnpm": {
"supportedArchitectures": {
"os": ["win32", "darwin", "current"],
"cpu": ["x64", "arm64"]
}
}
}
Additionally, supportedArchitectures
also supports specifying the libc
of the system.
pnpm.ignoredOptionalDependencies
If an optional dependency has its name included in this array, it will be skipped. Por ejemplo:
{
"pnpm": {
"ignoredOptionalDependencies": ["fsevents", "@esbuild/*"]
}
}
resolutions
Functionally identical to pnpm.overrides
, this field is intended to make it easier to migrate from Yarn.
resolutions
and pnpm.overrides
get merged before package resolution (with pnpm.overrides
taking precedence), which can be useful when you're migrating from Yarn and need to tweak a few packages just for pnpm.